Rutgers University: Algebra Written Qualifying Exam January 2017: Problem 2

Exercise. Prove that if the ring of polynomials R[x] over a commutative domain R with identity is a principal ideal ring, then R is a field.

Solution. *R* is a **commutative domain**: commutative ring with an identity and no zero divisors R[x] is a **principal ideal ring:** every ideal is generated by a single element. And R is a **field** if it is a commutative ring and R^* is a subgroup of $(R, \cdot, 1)$ Want to show: R has inverses under multiplication. Let $r \in R$ s.t. $r \neq 0$. $\langle r, x \rangle$ is an ideal in R[x]Since $\langle r, x \rangle$ is an ideal in R[x] and R[x] is a principal ideal ring, $\exists f \in R[x]$ s.t. $\langle f \rangle = \langle r, x \rangle$ $\implies \exists p(x), q(x) \in R[x]$ s.t. f(x)p(x) = rand f(x)q(x) = xBy looking at degrees, it follows that $f(x) = a \in R$ q(x) = bx + c, where $b, c \in R$ and $\implies x = f(x)q(x)$ =a(bx+c)= (ab)x + ac $\implies ab = 1$ $\implies a \text{ is a unit}$ since $\langle f \rangle = \langle a \rangle = \{ag(x) : g(x) \in R[x]\}$ $\implies \langle f \rangle = \langle 1 \rangle$ and ab = 1rs + tx = 1since $\langle r, x \rangle = \langle f \rangle = 1$ $\implies \exists s, t \in R[x]$ s.t. $\implies s_0 r = 1$ where s_0 is the constant term of s(x) \implies r is invertible Since r was arbitrary, R is closed under multiplicative inverses. Thus, R is a field.