Rutgers University: Algebra Written Qualifying Exam

 January 2017: Problem 2Exercise. Prove that if the ring of polynomials $R[x]$ over a commutative domain R with identity is a principal ideal ring, then R is a field.

Solution.

R is a commutative domain: commutative ring with an identity and no zero divisors
$R[x]$ is a principal ideal ring: every ideal is generated by a single element.
And R is a field if it is a commutative ring and R^{*} is a subgroup of $(R, \cdot, 1)$
Want to show: R has inverses under multiplication.
Let $r \in R$ s.t. $r \neq 0$.
$\langle r, x\rangle$ is an ideal in $R[x]$
Since $\langle r, x\rangle$ is an ideal in $R[x]$ and $R[x]$ is a principal ideal ring, $\exists f \in R[x]$ s.t. $\langle f\rangle=\langle r, x\rangle$
$\Longrightarrow \exists p(x), q(x) \in R[x] \quad$ s.t. $\quad f(x) p(x)=r \quad$ and $\quad f(x) q(x)=x$
By looking at degrees, it follows that

$$
\begin{aligned}
& f(x)=a \in R \quad \text { and } \quad q(x)=b x+c, \text { where } b, c \in R \\
& \Longrightarrow x=f(x) q(x) \\
& =a(b x+c) \\
& =(a b) x+a c \\
& \Longrightarrow a b=1 \\
& \Longrightarrow a \text { is a unit } \\
& \Longrightarrow\langle f\rangle=\langle 1\rangle \quad \text { since } \quad\langle f\rangle=\langle a\rangle=\{a g(x): g(x) \in R[x]\} \quad \text { and } a b=1 \\
& \Longrightarrow \exists s, t \in R[x] \quad \text { s.t. } \quad r s+t x=1 \quad \text { since }\langle r, x\rangle=\langle f\rangle=1 \\
& \Longrightarrow s_{0} r=1 \quad \text { where } \quad s_{0} \text { is the constant term of } s(x) \\
& \Longrightarrow r \text { is invertible }
\end{aligned}
$$

Since r was arbitrary, R is closed under multiplicative inverses.
Thus, R is a field.

